skip to main content


Search for: All records

Creators/Authors contains: "Papić, Zlatko"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We propose a frustration-free model for the Moore-Read quantum Hall state on sufficiently thin cylinders with circumferences ≲7 magnetic lengths. While the Moore-Read Hamiltonian involves complicated long-range interactions between triplets of electrons in a Landau level, our effective model is a simpler one-dimensional chain of qubits with deformed Fredkin gates. We show that the ground state of the Fredkin model has high overlap with the Moore-Read wave function and accurately reproduces the latter's entanglement properties. Moreover, we demonstrate that the model captures the dynamical response of the Moore-Read state to a geometric quench, induced by suddenly changing the anisotropy of the system. We elucidate the underlying mechanism of the quench dynamics and show that it coincides with the linearized bimetric field theory. The minimal model introduced here can be directly implemented as a first step towards quantum simulation of the Moore-Read state, as we demonstrate by deriving an efficient circuit approximation to the ground state and implementing it on an IBM quantum processor. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  2. Abstract

    Recent experiments on Rydberg atom arrays have found evidence of anomalously slow thermalization and persistent density oscillations, which have been interpreted as a many-body analog of the phenomenon of quantum scars. Periodic dynamics and atypical scarred eigenstates originate from a “hard” kinetic constraint: the neighboring Rydberg atoms cannot be simultaneously excited. Here we propose a realization of quantum many-body scars in a 1D bosonic lattice model with a “soft” constraint in the form of density-assisted hopping. We discuss the relation of this model to the standard Bose-Hubbard model and possible experimental realizations using ultracold atoms. We find that this model exhibits similar phenomenology to the Rydberg atom chain, including weakly entangled eigenstates at high energy densities and the presence of a large number of exact zero energy states, with distinct algebraic structure.

     
    more » « less