Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 1, 2026
-
Geometric fluctuations of the density mode in a fractional quantum Hall (FQH) state can give rise to a nematic FQH phase, a topological state with a spontaneously broken rotational symmetry. While experiments on FQH states in the second Landau level have reported signatures of putative FQH nematics in anisotropic transport, a realistic model for this state has been lacking. We show that the standard model of particles in the lowest Landau level interacting via the Coulomb potential realizes the FQH nematic transition, which is reached by a progressive reduction of the strength of the shortest-range Haldane pseudopotential. Using exact diagonalization and variational wave functions, we demonstrate that the FQH nematic transition occurs when the system’s neutral gap closes in the long-wavelength limit while the charge gap remains open. We confirm the symmetry-breaking nature of the transition by demonstrating the existence of a “circular moat” potential in the manifold of states with broken rotational symmetry, while its geometric character is revealed through the strong fluctuations of the nematic susceptibility and Hall viscosity. Published by the American Physical Society2024more » « less
-
We propose a frustration-free model for the Moore-Read quantum Hall state on sufficiently thin cylinders with circumferences ≲7 magnetic lengths. While the Moore-Read Hamiltonian involves complicated long-range interactions between triplets of electrons in a Landau level, our effective model is a simpler one-dimensional chain of qubits with deformed Fredkin gates. We show that the ground state of the Fredkin model has high overlap with the Moore-Read wave function and accurately reproduces the latter's entanglement properties. Moreover, we demonstrate that the model captures the dynamical response of the Moore-Read state to a geometric quench, induced by suddenly changing the anisotropy of the system. We elucidate the underlying mechanism of the quench dynamics and show that it coincides with the linearized bimetric field theory. The minimal model introduced here can be directly implemented as a first step towards quantum simulation of the Moore-Read state, as we demonstrate by deriving an efficient circuit approximation to the ground state and implementing it on an IBM quantum processor.more » « less
An official website of the United States government
